當數據挖掘遇上戰略決策
更新(xīn)時間:2023-10-10 09:57:43•點擊:2075756 • 行業觀點
數據挖掘的定義與價值
數據挖掘指從大量數據(包括文(wén)本)中(zhōng)挖掘出隐含的、未知的、對決策有(yǒu)潛在價值的關系、模式和趨勢,并利用(yòng)這些知識和規則建立用(yòng)于決策支持的模型,提供預測性決策支持的方法、工(gōng)具(jù)和過程。通常,數據挖掘會用(yòng)到應用(yòng)數學(xué)、統計學(xué)、數據庫技(jì )術、機器學(xué)習和人工(gōng)智能(néng)等多(duō)種技(jì )術。
在企業經營管理(lǐ)過程中(zhōng),數據挖掘可(kě)以幫助企業發現業務(wù)趨勢、揭示客觀規律、預測未知結果、優化戰略決策的效率與效果,同時,數據挖掘還可(kě)以幫助企業優化業務(wù)運營的流程,提升用(yòng)戶與員工(gōng)的體(tǐ)驗。用(yòng)好數據挖掘工(gōng)具(jù),構建基于數據驅動的戰略決策(Data-Driven Decision-Making (DDDM))體(tǐ)系,将讓企業在面向未來不确定性時做出明智的戰略抉擇。
機器學(xué)習的分(fēn)類與經典模型介紹
機器學(xué)習是數據挖掘的重要技(jì )術支撐,根據學(xué)習範式的不同,機器學(xué)習可(kě)劃分(fēn)為(wèi)有(yǒu)監督學(xué)習、無監督學(xué)習、強化學(xué)習和深度學(xué)習。有(yǒu)監督學(xué)習指從有(yǒu)标注訓練數據中(zhōng)推導出預測函數,一般用(yòng)于解決預測或者分(fēn)類問題;無監督學(xué)習指對無标簽樣本進行學(xué)習揭示數據内在規律,從給定數據中(zhōng)找到隐藏的模式和見解,一般用(yòng)于解決聚類或者關聯關系探查等問題;強化學(xué)習不依賴标注數據,用(yòng)于描述和解決智能(néng)體(tǐ)(agent)在與環境的交互過程中(zhōng)通過環境給予的反饋(獎勵)學(xué)習策略以達成回報最大化或實現特定目标的問題。深度學(xué)習指使用(yòng)神經網絡模型來學(xué)習數據的特征,可(kě)以在大規模數據上進行訓練。
機器學(xué)習的分(fēn)類
其中(zhōng),有(yǒu)監督、無監督學(xué)習是主流常用(yòng)的機器學(xué)習模型,在企業戰略決策中(zhōng)有(yǒu)着豐富的使用(yòng)場景。有(yǒu)監督學(xué)習使用(yòng)的算法模型包括線(xiàn)性回歸、邏輯回歸、時序模型、決策樹模型,無監督學(xué)習使用(yòng)的算法模型包括K-means、PCA、DBSCAN、Apriori等。
經典模型的介紹
建模的步驟與流程
應用(yòng)數據挖掘輔助戰略決策分(fēn)為(wèi)5大步驟:問題定義、數據分(fēn)析、特征工(gōng)程、算法建模與模型評價。
問題定義:将現實業務(wù)經營管理(lǐ)問題映射到數學(xué)表示,明确數據挖掘目标。
數據分(fēn)析:包括取樣、探索及預處理(lǐ)三個步驟,核心目的是提高數據集。
特征工(gōng)程:是把原始數據轉變為(wèi)模型的訓練數據的過程,目的是獲取更好的訓練數據特征,使得機器學(xué)習模型逼近訓練上限。
算法建模:是數據挖掘工(gōng)作(zuò)的核心環節,需要思考建模屬于數據挖掘應用(yòng)中(zhōng)的哪類問題并選用(yòng)對應算法進行模型構建。
模型評價:需要一組沒有(yǒu)參與預測模型建立的獨立數據集,即測試集數據,評價預測模型的準确率。
建模步驟與流程
數據挖掘在戰略決策中(zhōng)的實戰案例
實戰案例①:幫助某酒店(diàn)集團進行常住酒店(diàn)公(gōng)寓選址
案例關鍵詞:#酒店(diàn)行業# #有(yǒu)監督學(xué)習# #回歸模型# #決策樹模型#
客戶核心訴求:提高常住酒店(diàn)公(gōng)寓項目選址決策效率,在城市中(zhōng)篩選住客入住需求集中(zhōng)的地塊,保證項目投運後的收益。
數據挖掘步驟:
● 定義挖掘目标:合理(lǐ)進行門店(diàn)的規劃選址,選擇潛在高銷量區(qū)域。
● 分(fēn)析地塊數據:導入已有(yǒu)門店(diàn)信息、門店(diàn)銷量、競品門店(diàn)銷量、宏觀指标、市場表現等數據,開展數據分(fēn)析。
● 構建特征工(gōng)程:包括門店(diàn)特征、地塊特征、城市特征、競品特征等。
● 決策樹建模:采用(yòng)決策樹模型在訓練集進行訓練,對備選區(qū)域在地塊得分(fēn)、競品門店(diàn)數量、投資回報周期等關鍵選址決策要素下的表現進行分(fēn)類。
● 效果驗證:在測試集對算法模型進行效果驗證,并進行合理(lǐ)性分(fēn)析。
● 選址決策應用(yòng):在不同區(qū)域應用(yòng)選址決策模型,輸出門店(diàn)選址與擴張策略。
建模步驟與流程
戰略決策輸出:在試點城市跑通模型後輸出标準化選址決策機制,可(kě)在集團内部其餘區(qū)域業務(wù)擴張過程中(zhōng)提供決策支持,同時根據不同城市地塊的模型決策結果追蹤輔助判斷地區(qū)業務(wù)發展空間及潛力,适當調整區(qū)域業務(wù)戰略側重,聚焦重點區(qū)域及重點地塊的資源投入。
實戰案例②:幫助某鞋業公(gōng)司搭建暢銷商(shāng)品補貨模型
案例關鍵詞:#鞋服零售# #有(yǒu)監督學(xué)習# #時序模型# #補貨預測模型#
客戶核心訴求:對門店(diàn)内的暢銷款式銷售數據進行挖掘,構建銷量預測及補貨預測模型,以盡可(kě)能(néng)小(xiǎo)的庫存,為(wèi)暢銷款高效配置庫存、銷售資源,最大化暢銷款的銷售機會。
數據挖掘步驟:
● 挖掘目标定義:通過及時、足量補貨等手段,以盡可(kě)能(néng)小(xiǎo)的庫存,為(wèi)暢銷款商(shāng)品高效配置資源,實現銷量最大化。
● 數據取樣與探索:挖掘門店(diàn)、倉庫數據體(tǐ)系中(zhōng)的銷售、進貨、庫存指标,探索指标相關性。
● 數據預處理(lǐ):基于數據計算為(wèi)各類商(shāng)品貼标簽,包括“毛利率水平偏高”、“庫存水平偏低”、“新(xīn)貨品”等标簽。
● 特征開發:剔除部分(fēn)标簽,如“庫存水平偏高”、“連續三周銷售下降”,保留與暢銷貨品高度相關的标簽作(zuò)為(wèi)模型特征。
● 模型構建:根據時序模型構建“滾動銷量預測算法”,輸入季節、貨品銷量、性别、風格細類等相關特征。
● 模型測試:利用(yòng)測試集數據開展模型測試。
基于數據分(fēn)析為(wèi)各類商(shāng)品貼标簽
根據時序模型構建“滾動銷量預測算法”
戰略決策輸出:根據預測銷量,測算期末庫存以制定大促期間的到貨計劃,若(上周期末庫存-當周預測銷量)<0,則需以訂貨數量的倍數進貨,并基于到貨計劃,根據供應鏈前置時間(lead time)進行下單,以此減少期末庫存壓力,高效調動庫存配置和銷售資源,實現爆款商(shāng)品銷量最大化。
實戰案例③:幫助某零售連鎖企業進行門店(diàn)分(fēn)群與經營評估
案例關鍵詞:#零售行業# #無監督學(xué)習# #聚類分(fēn)析# #門店(diàn)經營評估#
客戶核心訴求:對已有(yǒu)門店(diàn)進行分(fēn)群,挖掘不同類别門店(diàn)特征,識别優秀或異常門店(diàn),煥新(xīn)門店(diàn)分(fēn)類管理(lǐ)策略。
數據挖掘步驟:
● 挖掘目标定義:通過提取門店(diàn)的各類特征,構建門店(diàn)經營評估與分(fēn)群模型
● 數據取樣與探索:選取數據庫中(zhōng)的商(shāng)戶屬性、經營信息、風險信息等相關數據指标。檢驗租金、銷售數據是否符合正态分(fēn)布規律。
● 特征開發:對數據進行取值SQL、取值維度、指标缺失值、指标異常值、指标一緻性等特征處理(lǐ)。
● 模型構建:通過降維,篩選出從數據視角分(fēn)析得出的關鍵因子,确定最終的因子并構建算法模型。
● 門店(diàn)分(fēn)群:每個群組門店(diàn)特征會呈現差異,針對不同群組的特征進行分(fēn)析,識别不同類型門店(diàn)特征,确定門店(diàn)劃分(fēn)标準與分(fēn)群結果。
● 成因分(fēn)析:基于門店(diàn)特征挖掘結果,選取有(yǒu)代表性門店(diàn)開展生命周期分(fēn)析。
戰略決策輸出:根據模型聚類的三類門店(diàn)特質(zhì),匹配差異化管理(lǐ)舉措。對于表現優秀的門店(diàn),挖掘其成功經驗并在其他(tā)門店(diàn)進行推廣,對于存在潛在風險的門店(diàn)可(kě)及時進行幹預。
聚類分(fēn)析模型:在未設定标簽的情況下,根據數據相似度進行分(fēn)組
結語
經驗主義哲學(xué)家弗朗西斯·培根曾說過:“我們大部分(fēn)的人的理(lǐ)解力容易出現偏差,我們的心智容易被假象所困住。”在現代企業的戰略決策中(zhōng),管理(lǐ)者的戰略判斷也常常會受到固有(yǒu)認知、個人直覺或理(lǐ)解偏差所影響。數據挖掘的意義在于幫助管理(lǐ)者從大量的數據中(zhōng)去提取那些隐藏其中(zhōng)的、預先未知的、但有(yǒu)潛在價值的客觀規律,讓管理(lǐ)者在進行決策時有(yǒu)更堅實的依據與更充分(fēn)的論斷。
數據從來不是全部,數據也不能(néng)替代思考,但他(tā)可(kě)以讓你站在巨人的肩膀上。
-
當數據挖掘遇上戰略決策
2023-10-10 09:57:43•2075756 次
-
WIPO:2023年全球創新(xīn)指數報告
2023-10-10 09:52:25•1512225 次
-
阿秒(miǎo)激光技(jì )術是否将成為(wèi)物(wù)理(lǐ)學(xué)的未來?
2023-10-10 09:23:50•1419079 次
-
與IT決策者們共同探尋中(zhōng)國(guó)數字化轉型之路
2023-07-29 21:25:26•1366981 次