當數據挖掘遇上戰略決策

更新(xīn)時間:2023-10-10 09:57:43點擊:2075757 行業觀點

在數據智能(néng)的時代,僅僅依靠管理(lǐ)者經驗、直覺以及推斷所做出戰略決策的時代已經一去不複返了。在企業經營管理(lǐ)中(zhōng)産(chǎn)生的大量數據資産(chǎn),就像綿延不絕的礦脈,蘊藏着巨大的能(néng)量,隻要肯挖掘,便能(néng)釋放巨大的戰略價值。當數據挖掘遇上戰略決策,當數據科(kē)學(xué)家攜手管理(lǐ)咨詢顧問,全新(xīn)的戰略決策模式即将開啓。

數據挖掘的定義與價值

數據挖掘指從大量數據(包括文(wén)本)中(zhōng)挖掘出隐含的、未知的、對決策有(yǒu)潛在價值的關系、模式和趨勢,并利用(yòng)這些知識和規則建立用(yòng)于決策支持的模型,提供預測性決策支持的方法、工(gōng)具(jù)和過程。通常,數據挖掘會用(yòng)到應用(yòng)數學(xué)、統計學(xué)、數據庫技(jì )術、機器學(xué)習和人工(gōng)智能(néng)等多(duō)種技(jì )術。

在企業經營管理(lǐ)過程中(zhōng),數據挖掘可(kě)以幫助企業發現業務(wù)趨勢、揭示客觀規律、預測未知結果、優化戰略決策的效率與效果,同時,數據挖掘還可(kě)以幫助企業優化業務(wù)運營的流程,提升用(yòng)戶與員工(gōng)的體(tǐ)驗。用(yòng)好數據挖掘工(gōng)具(jù),構建基于數據驅動的戰略決策(Data-Driven Decision-Making (DDDM))體(tǐ)系,将讓企業在面向未來不确定性時做出明智的戰略抉擇。

機器學(xué)習的分(fēn)類與經典模型介紹

機器學(xué)習是數據挖掘的重要技(jì )術支撐,根據學(xué)習範式的不同,機器學(xué)習可(kě)劃分(fēn)為(wèi)有(yǒu)監督學(xué)習、無監督學(xué)習、強化學(xué)習深度學(xué)習有(yǒu)監督學(xué)習指從有(yǒu)标注訓練數據中(zhōng)推導出預測函數,一般用(yòng)于解決預測或者分(fēn)類問題;無監督學(xué)習指對無标簽樣本進行學(xué)習揭示數據内在規律,從給定數據中(zhōng)找到隐藏的模式和見解,一般用(yòng)于解決聚類或者關聯關系探查等問題;強化學(xué)習不依賴标注數據,用(yòng)于描述和解決智能(néng)體(tǐ)(agent)在與環境的交互過程中(zhōng)通過環境給予的反饋(獎勵)學(xué)習策略以達成回報最大化或實現特定目标的問題。深度學(xué)習指使用(yòng)神經網絡模型來學(xué)習數據的特征,可(kě)以在大規模數據上進行訓練。

機器學(xué)習的分(fēn)類

其中(zhōng),有(yǒu)監督、無監督學(xué)習是主流常用(yòng)的機器學(xué)習模型,在企業戰略決策中(zhōng)有(yǒu)着豐富的使用(yòng)場景。有(yǒu)監督學(xué)習使用(yòng)的算法模型包括線(xiàn)性回歸、邏輯回歸、時序模型、決策樹模型,無監督學(xué)習使用(yòng)的算法模型包括K-means、PCA、DBSCAN、Apriori等。

經典模型的介紹

建模的步驟與流程

應用(yòng)數據挖掘輔助戰略決策分(fēn)為(wèi)5大步驟:問題定義、數據分(fēn)析、特征工(gōng)程、算法建模與模型評價。

問題定義:将現實業務(wù)經營管理(lǐ)問題映射到數學(xué)表示,明确數據挖掘目标。

數據分(fēn)析:包括取樣、探索及預處理(lǐ)三個步驟,核心目的是提高數據集。

特征工(gōng)程:是把原始數據轉變為(wèi)模型的訓練數據的過程,目的是獲取更好的訓練數據特征,使得機器學(xué)習模型逼近訓練上限。

算法建模:是數據挖掘工(gōng)作(zuò)的核心環節,需要思考建模屬于數據挖掘應用(yòng)中(zhōng)的哪類問題并選用(yòng)對應算法進行模型構建。

模型評價:需要一組沒有(yǒu)參與預測模型建立的獨立數據集,即測試集數據,評價預測模型的準确率。

建模步驟與流程

數據挖掘在戰略決策中(zhōng)的實戰案例

實戰案例①:幫助某酒店(diàn)集團進行常住酒店(diàn)公(gōng)寓選址

案例關鍵詞:#酒店(diàn)行業# #有(yǒu)監督學(xué)習# #回歸模型# #決策樹模型#

客戶核心訴求:提高常住酒店(diàn)公(gōng)寓項目選址決策效率,在城市中(zhōng)篩選住客入住需求集中(zhōng)的地塊,保證項目投運後的收益。

數據挖掘步驟:

 ●  定義挖掘目标:合理(lǐ)進行門店(diàn)的規劃選址,選擇潛在高銷量區(qū)域。

 ●  分(fēn)析地塊數據:導入已有(yǒu)門店(diàn)信息、門店(diàn)銷量、競品門店(diàn)銷量、宏觀指标、市場表現等數據,開展數據分(fēn)析。

 ●  構建特征工(gōng)程:包括門店(diàn)特征、地塊特征、城市特征、競品特征等。

 ●  決策樹建模:采用(yòng)決策樹模型在訓練集進行訓練,對備選區(qū)域在地塊得分(fēn)、競品門店(diàn)數量、投資回報周期等關鍵選址決策要素下的表現進行分(fēn)類。

 ●  效果驗證:在測試集對算法模型進行效果驗證,并進行合理(lǐ)性分(fēn)析。

 ●  選址決策應用(yòng):在不同區(qū)域應用(yòng)選址決策模型,輸出門店(diàn)選址與擴張策略。

建模步驟與流程

戰略決策輸出:在試點城市跑通模型後輸出标準化選址決策機制,可(kě)在集團内部其餘區(qū)域業務(wù)擴張過程中(zhōng)提供決策支持,同時根據不同城市地塊的模型決策結果追蹤輔助判斷地區(qū)業務(wù)發展空間及潛力,适當調整區(qū)域業務(wù)戰略側重,聚焦重點區(qū)域及重點地塊的資源投入。

實戰案例②:幫助某鞋業公(gōng)司搭建暢銷商(shāng)品補貨模型

案例關鍵詞:#鞋服零售# #有(yǒu)監督學(xué)習# #時序模型# #補貨預測模型#

客戶核心訴求:對門店(diàn)内的暢銷款式銷售數據進行挖掘,構建銷量預測及補貨預測模型,以盡可(kě)能(néng)小(xiǎo)的庫存,為(wèi)暢銷款高效配置庫存、銷售資源,最大化暢銷款的銷售機會。

數據挖掘步驟:

 ●  挖掘目标定義:通過及時、足量補貨等手段,以盡可(kě)能(néng)小(xiǎo)的庫存,為(wèi)暢銷款商(shāng)品高效配置資源,實現銷量最大化。

 ●  數據取樣與探索:挖掘門店(diàn)、倉庫數據體(tǐ)系中(zhōng)的銷售、進貨、庫存指标,探索指标相關性。

 ●  數據預處理(lǐ):基于數據計算為(wèi)各類商(shāng)品貼标簽,包括“毛利率水平偏高”、“庫存水平偏低”、“新(xīn)貨品”等标簽。

 ●  特征開發:剔除部分(fēn)标簽,如“庫存水平偏高”、“連續三周銷售下降”,保留與暢銷貨品高度相關的标簽作(zuò)為(wèi)模型特征。

 ●  模型構建:根據時序模型構建“滾動銷量預測算法”,輸入季節、貨品銷量、性别、風格細類等相關特征。

 ●  模型測試:利用(yòng)測試集數據開展模型測試。

基于數據分(fēn)析為(wèi)各類商(shāng)品貼标簽

根據時序模型構建“滾動銷量預測算法”

戰略決策輸出:根據預測銷量,測算期末庫存以制定大促期間的到貨計劃,若(上周期末庫存-當周預測銷量)<0,則需以訂貨數量的倍數進貨,并基于到貨計劃,根據供應鏈前置時間(lead time)進行下單,以此減少期末庫存壓力,高效調動庫存配置和銷售資源,實現爆款商(shāng)品銷量最大化。

實戰案例③:幫助某零售連鎖企業進行門店(diàn)分(fēn)群與經營評估

案例關鍵詞:#零售行業# #無監督學(xué)習# #聚類分(fēn)析# #門店(diàn)經營評估#

客戶核心訴求:對已有(yǒu)門店(diàn)進行分(fēn)群,挖掘不同類别門店(diàn)特征,識别優秀或異常門店(diàn),煥新(xīn)門店(diàn)分(fēn)類管理(lǐ)策略。

數據挖掘步驟:

 ●  挖掘目标定義:通過提取門店(diàn)的各類特征,構建門店(diàn)經營評估與分(fēn)群模型

 ●  數據取樣與探索:選取數據庫中(zhōng)的商(shāng)戶屬性、經營信息、風險信息等相關數據指标。檢驗租金、銷售數據是否符合正态分(fēn)布規律。

 ●  特征開發:對數據進行取值SQL、取值維度、指标缺失值、指标異常值、指标一緻性等特征處理(lǐ)。

 ●  模型構建:通過降維,篩選出從數據視角分(fēn)析得出的關鍵因子,确定最終的因子并構建算法模型。

 ●  門店(diàn)分(fēn)群:每個群組門店(diàn)特征會呈現差異,針對不同群組的特征進行分(fēn)析,識别不同類型門店(diàn)特征,确定門店(diàn)劃分(fēn)标準與分(fēn)群結果。

 ●  成因分(fēn)析:基于門店(diàn)特征挖掘結果,選取有(yǒu)代表性門店(diàn)開展生命周期分(fēn)析。

戰略決策輸出:根據模型聚類的三類門店(diàn)特質(zhì),匹配差異化管理(lǐ)舉措。對于表現優秀的門店(diàn),挖掘其成功經驗并在其他(tā)門店(diàn)進行推廣,對于存在潛在風險的門店(diàn)可(kě)及時進行幹預。

聚類分(fēn)析模型:在未設定标簽的情況下,根據數據相似度進行分(fēn)組

結語

經驗主義哲學(xué)家弗朗西斯·培根曾說過:“我們大部分(fēn)的人的理(lǐ)解力容易出現偏差,我們的心智容易被假象所困住。”在現代企業的戰略決策中(zhōng),管理(lǐ)者的戰略判斷也常常會受到固有(yǒu)認知、個人直覺或理(lǐ)解偏差所影響。數據挖掘的意義在于幫助管理(lǐ)者從大量的數據中(zhōng)去提取那些隐藏其中(zhōng)的、預先未知的、但有(yǒu)潛在價值的客觀規律,讓管理(lǐ)者在進行決策時有(yǒu)更堅實的依據與更充分(fēn)的論斷。

數據從來不是全部,數據也不能(néng)替代思考,但他(tā)可(kě)以讓你站在巨人的肩膀上。

欧洲尺码日本尺码美国欧洲LV 我女朋友的妈妈双字ID5 大地中文在线观看免费高清 樱花动漫 官方入门网站 亚洲成色7777777久久 巨胸女教师秘书HD 农村+肉+屁股+粗+大+岳 性一交一乱一交A片久久四色 一边下奶一吃敷面膜视频 我在生存游戏里靠艾C存活 车上拨开内裤进入内内的软件 叔叔别撩我免费观看电视剧 女性私密紧致视频 人禽乱H交H高文 双性少爷挨脔日常H惩罚H 啊灬啊灬啊灬快灬深草莓视频 《禁止的爱》在线观看 瞒着老公加班的HR中字 全是肉的高H文〈男男〉 少女的免费高清中国 成全电影大全在线观看第二季 攵女乱H系列合集多女国产剧 少女韩国免费观看高清电视剧 妻子8免费完整高清电视剧在线看 日韩黄色视频 天天干夜夜操 一边添奶一边添P好爽视频 GOGOGO免费高清在线完整版 麻花传剧原创MV在线观看 Z〇ZOZ〇女人另类ZOZ〇 成人A片在线观看WWW涩欲满 双腿张开被5个男人调教电影 少妇厨房愉情2 一路向西在线观看 精跪趴灌满H室友4P公交车 欧美又大又硬又粗BBBBB 欧洲尺码日本尺码专线不卡顿 久久久天堂国产精品女人 黑料网今日黑料首页 被男人吃奶跟添下面特舒服 男妓跪趴把舌头伸进我的嘴巴 天美麻花果冻视频大全英文版 花荫露第十七回原文及翻译 狂野少女免费完整版中文 善良的儿媳 国产破苞第一次 成全世界免费高清观看 小柔被六个男人躁到早上电影 花房姑娘8电视剧免费观看 三年片在线观看免费观看高清动漫 人妻边做边看A片 成全在线播放视频在线播放 做床爱全过程激烈视频网站 被男妓的舌头伺候到高潮 久久久天堂国产精品女人 欧美性猛交XXXXX无码婷 樱花影院电视剧免费 四LLL少妇BBBB槡BBBB 免费看欧美成人A片无码 欧洲尺码日本尺码美国欧洲LV 我的漂亮的小瘦子3 哔哩哔哩高清免费观看 公玩弄年轻人妻HD 性少妇VIDEOXXX欧美69 涂了春药被一群人伦爽99势 妈妈的朋友在线观看 今夜无人入睡免费观看第7集 少女哔哩哔哩高清免费播放 美丽姑娘高清版在线观看免费中文 无码成人AAAAA毛片AI换脸 调教男奴开腿羞辱性用具男男 亚洲成人av 爽灬爽灬爽灬毛及A片 原来的琪琪电影在线看 孤舟电视剧40集在线观看免费高清 GOGOGO高清免费完整版游戏 一边吃奶一边摸做爽视频 三年中文在线观看免费大全 少女たちよ观看动漫第二季预告 四个校花洗澡被17个农民工