當數據挖掘遇上戰略決策

更新(xīn)時間:2023-10-10 09:57:43點擊:2075779 行業觀點

在數據智能(néng)的時代,僅僅依靠管理(lǐ)者經驗、直覺以及推斷所做出戰略決策的時代已經一去不複返了。在企業經營管理(lǐ)中(zhōng)産(chǎn)生的大量數據資産(chǎn),就像綿延不絕的礦脈,蘊藏着巨大的能(néng)量,隻要肯挖掘,便能(néng)釋放巨大的戰略價值。當數據挖掘遇上戰略決策,當數據科(kē)學(xué)家攜手管理(lǐ)咨詢顧問,全新(xīn)的戰略決策模式即将開啓。

數據挖掘的定義與價值

數據挖掘指從大量數據(包括文(wén)本)中(zhōng)挖掘出隐含的、未知的、對決策有(yǒu)潛在價值的關系、模式和趨勢,并利用(yòng)這些知識和規則建立用(yòng)于決策支持的模型,提供預測性決策支持的方法、工(gōng)具(jù)和過程。通常,數據挖掘會用(yòng)到應用(yòng)數學(xué)、統計學(xué)、數據庫技(jì )術、機器學(xué)習和人工(gōng)智能(néng)等多(duō)種技(jì )術。

在企業經營管理(lǐ)過程中(zhōng),數據挖掘可(kě)以幫助企業發現業務(wù)趨勢、揭示客觀規律、預測未知結果、優化戰略決策的效率與效果,同時,數據挖掘還可(kě)以幫助企業優化業務(wù)運營的流程,提升用(yòng)戶與員工(gōng)的體(tǐ)驗。用(yòng)好數據挖掘工(gōng)具(jù),構建基于數據驅動的戰略決策(Data-Driven Decision-Making (DDDM))體(tǐ)系,将讓企業在面向未來不确定性時做出明智的戰略抉擇。

機器學(xué)習的分(fēn)類與經典模型介紹

機器學(xué)習是數據挖掘的重要技(jì )術支撐,根據學(xué)習範式的不同,機器學(xué)習可(kě)劃分(fēn)為(wèi)有(yǒu)監督學(xué)習、無監督學(xué)習、強化學(xué)習深度學(xué)習有(yǒu)監督學(xué)習指從有(yǒu)标注訓練數據中(zhōng)推導出預測函數,一般用(yòng)于解決預測或者分(fēn)類問題;無監督學(xué)習指對無标簽樣本進行學(xué)習揭示數據内在規律,從給定數據中(zhōng)找到隐藏的模式和見解,一般用(yòng)于解決聚類或者關聯關系探查等問題;強化學(xué)習不依賴标注數據,用(yòng)于描述和解決智能(néng)體(tǐ)(agent)在與環境的交互過程中(zhōng)通過環境給予的反饋(獎勵)學(xué)習策略以達成回報最大化或實現特定目标的問題。深度學(xué)習指使用(yòng)神經網絡模型來學(xué)習數據的特征,可(kě)以在大規模數據上進行訓練。

機器學(xué)習的分(fēn)類

其中(zhōng),有(yǒu)監督、無監督學(xué)習是主流常用(yòng)的機器學(xué)習模型,在企業戰略決策中(zhōng)有(yǒu)着豐富的使用(yòng)場景。有(yǒu)監督學(xué)習使用(yòng)的算法模型包括線(xiàn)性回歸、邏輯回歸、時序模型、決策樹模型,無監督學(xué)習使用(yòng)的算法模型包括K-means、PCA、DBSCAN、Apriori等。

經典模型的介紹

建模的步驟與流程

應用(yòng)數據挖掘輔助戰略決策分(fēn)為(wèi)5大步驟:問題定義、數據分(fēn)析、特征工(gōng)程、算法建模與模型評價。

問題定義:将現實業務(wù)經營管理(lǐ)問題映射到數學(xué)表示,明确數據挖掘目标。

數據分(fēn)析:包括取樣、探索及預處理(lǐ)三個步驟,核心目的是提高數據集。

特征工(gōng)程:是把原始數據轉變為(wèi)模型的訓練數據的過程,目的是獲取更好的訓練數據特征,使得機器學(xué)習模型逼近訓練上限。

算法建模:是數據挖掘工(gōng)作(zuò)的核心環節,需要思考建模屬于數據挖掘應用(yòng)中(zhōng)的哪類問題并選用(yòng)對應算法進行模型構建。

模型評價:需要一組沒有(yǒu)參與預測模型建立的獨立數據集,即測試集數據,評價預測模型的準确率。

建模步驟與流程

數據挖掘在戰略決策中(zhōng)的實戰案例

實戰案例①:幫助某酒店(diàn)集團進行常住酒店(diàn)公(gōng)寓選址

案例關鍵詞:#酒店(diàn)行業# #有(yǒu)監督學(xué)習# #回歸模型# #決策樹模型#

客戶核心訴求:提高常住酒店(diàn)公(gōng)寓項目選址決策效率,在城市中(zhōng)篩選住客入住需求集中(zhōng)的地塊,保證項目投運後的收益。

數據挖掘步驟:

 ●  定義挖掘目标:合理(lǐ)進行門店(diàn)的規劃選址,選擇潛在高銷量區(qū)域。

 ●  分(fēn)析地塊數據:導入已有(yǒu)門店(diàn)信息、門店(diàn)銷量、競品門店(diàn)銷量、宏觀指标、市場表現等數據,開展數據分(fēn)析。

 ●  構建特征工(gōng)程:包括門店(diàn)特征、地塊特征、城市特征、競品特征等。

 ●  決策樹建模:采用(yòng)決策樹模型在訓練集進行訓練,對備選區(qū)域在地塊得分(fēn)、競品門店(diàn)數量、投資回報周期等關鍵選址決策要素下的表現進行分(fēn)類。

 ●  效果驗證:在測試集對算法模型進行效果驗證,并進行合理(lǐ)性分(fēn)析。

 ●  選址決策應用(yòng):在不同區(qū)域應用(yòng)選址決策模型,輸出門店(diàn)選址與擴張策略。

建模步驟與流程

戰略決策輸出:在試點城市跑通模型後輸出标準化選址決策機制,可(kě)在集團内部其餘區(qū)域業務(wù)擴張過程中(zhōng)提供決策支持,同時根據不同城市地塊的模型決策結果追蹤輔助判斷地區(qū)業務(wù)發展空間及潛力,适當調整區(qū)域業務(wù)戰略側重,聚焦重點區(qū)域及重點地塊的資源投入。

實戰案例②:幫助某鞋業公(gōng)司搭建暢銷商(shāng)品補貨模型

案例關鍵詞:#鞋服零售# #有(yǒu)監督學(xué)習# #時序模型# #補貨預測模型#

客戶核心訴求:對門店(diàn)内的暢銷款式銷售數據進行挖掘,構建銷量預測及補貨預測模型,以盡可(kě)能(néng)小(xiǎo)的庫存,為(wèi)暢銷款高效配置庫存、銷售資源,最大化暢銷款的銷售機會。

數據挖掘步驟:

 ●  挖掘目标定義:通過及時、足量補貨等手段,以盡可(kě)能(néng)小(xiǎo)的庫存,為(wèi)暢銷款商(shāng)品高效配置資源,實現銷量最大化。

 ●  數據取樣與探索:挖掘門店(diàn)、倉庫數據體(tǐ)系中(zhōng)的銷售、進貨、庫存指标,探索指标相關性。

 ●  數據預處理(lǐ):基于數據計算為(wèi)各類商(shāng)品貼标簽,包括“毛利率水平偏高”、“庫存水平偏低”、“新(xīn)貨品”等标簽。

 ●  特征開發:剔除部分(fēn)标簽,如“庫存水平偏高”、“連續三周銷售下降”,保留與暢銷貨品高度相關的标簽作(zuò)為(wèi)模型特征。

 ●  模型構建:根據時序模型構建“滾動銷量預測算法”,輸入季節、貨品銷量、性别、風格細類等相關特征。

 ●  模型測試:利用(yòng)測試集數據開展模型測試。

基于數據分(fēn)析為(wèi)各類商(shāng)品貼标簽

根據時序模型構建“滾動銷量預測算法”

戰略決策輸出:根據預測銷量,測算期末庫存以制定大促期間的到貨計劃,若(上周期末庫存-當周預測銷量)<0,則需以訂貨數量的倍數進貨,并基于到貨計劃,根據供應鏈前置時間(lead time)進行下單,以此減少期末庫存壓力,高效調動庫存配置和銷售資源,實現爆款商(shāng)品銷量最大化。

實戰案例③:幫助某零售連鎖企業進行門店(diàn)分(fēn)群與經營評估

案例關鍵詞:#零售行業# #無監督學(xué)習# #聚類分(fēn)析# #門店(diàn)經營評估#

客戶核心訴求:對已有(yǒu)門店(diàn)進行分(fēn)群,挖掘不同類别門店(diàn)特征,識别優秀或異常門店(diàn),煥新(xīn)門店(diàn)分(fēn)類管理(lǐ)策略。

數據挖掘步驟:

 ●  挖掘目标定義:通過提取門店(diàn)的各類特征,構建門店(diàn)經營評估與分(fēn)群模型

 ●  數據取樣與探索:選取數據庫中(zhōng)的商(shāng)戶屬性、經營信息、風險信息等相關數據指标。檢驗租金、銷售數據是否符合正态分(fēn)布規律。

 ●  特征開發:對數據進行取值SQL、取值維度、指标缺失值、指标異常值、指标一緻性等特征處理(lǐ)。

 ●  模型構建:通過降維,篩選出從數據視角分(fēn)析得出的關鍵因子,确定最終的因子并構建算法模型。

 ●  門店(diàn)分(fēn)群:每個群組門店(diàn)特征會呈現差異,針對不同群組的特征進行分(fēn)析,識别不同類型門店(diàn)特征,确定門店(diàn)劃分(fēn)标準與分(fēn)群結果。

 ●  成因分(fēn)析:基于門店(diàn)特征挖掘結果,選取有(yǒu)代表性門店(diàn)開展生命周期分(fēn)析。

戰略決策輸出:根據模型聚類的三類門店(diàn)特質(zhì),匹配差異化管理(lǐ)舉措。對于表現優秀的門店(diàn),挖掘其成功經驗并在其他(tā)門店(diàn)進行推廣,對于存在潛在風險的門店(diàn)可(kě)及時進行幹預。

聚類分(fēn)析模型:在未設定标簽的情況下,根據數據相似度進行分(fēn)組

結語

經驗主義哲學(xué)家弗朗西斯·培根曾說過:“我們大部分(fēn)的人的理(lǐ)解力容易出現偏差,我們的心智容易被假象所困住。”在現代企業的戰略決策中(zhōng),管理(lǐ)者的戰略判斷也常常會受到固有(yǒu)認知、個人直覺或理(lǐ)解偏差所影響。數據挖掘的意義在于幫助管理(lǐ)者從大量的數據中(zhōng)去提取那些隐藏其中(zhōng)的、預先未知的、但有(yǒu)潛在價值的客觀規律,讓管理(lǐ)者在進行決策時有(yǒu)更堅實的依據與更充分(fēn)的論斷。

數據從來不是全部,數據也不能(néng)替代思考,但他(tā)可(kě)以讓你站在巨人的肩膀上。

男朋友跟我啪啪不够硬进不去 强开少妇嫩苞又嫩又紧小说 《年轻的寡妇2》中文字幕 花房姑娘免费观看2022古装剧 成人A片产无码免费视频奶头鸭度 精品人妻少妇嫩草AV无码专区 大地资源中文在线观看官网免费 夫妇交换做爰4 大地资源二中文在线观看官网 被男人吃奶跟添下面特舒服 巜交换做爰2中字韩国 好姑娘高清在线看国语 小莹客厅激情46章至50章视 妈妈的男朋友 亚瑟 中文字幕 一面亲一面膜下最新版 美丽的桃子2意大利语来源 TXVLOGCOM糖心官网网站 国产CHINESE男男GAYGAY网站 性──交───乱乡村 宝贝再忍点灬舒服灬大点视频 成全影视大全在线看 车上拨开内裤进入内内的软件 成人交性视频免费看 日本水蜜桃身体乳正品推荐 被伴郎的内捧猛烈进出H 战狼4完整免费观看在线播放版 我和岳乱妇三级高清电影 小学生高清电影免费观看 人物动物高清在线观看定档 私人家庭影院在线 脱岳裙子从后面挺进去在线观看 美国的忌讳-5 欧洲最强RAPPER免费高清 亚洲无专砖码直接进入 巜出轨上司的人妻2中字 高中女篮比赛盛轮轩T 越南少妇做受XXX片 国产精品久久久久久 国产电影一曲二曲三曲图片 小扫货水能么多公交车 巜出轨上司的人妻3 欧美第一页 最好看免费观看高清电影大全 真空下楼取快递被C嗯啊 少妇放荡白洁干柴烈火40视频 丰满熟妇被猛烈进入高清片 成人永久免费CRM 高压监狱免费观看完整版全集 最好看的中文字幕国语电视剧 大地资源在线观看免费中文版 青青河边草免费观看完整版高清 樱花电影大全免费高清观看 精产国品一二三产品区别视频手机 宝贝再忍点灬舒服灬大点视频 销售的销售秘密3HD中字 成全在线观看免费完整 逃脱~孕妇精灵4 人人妻人人澡人人爽人人DVD 雨燕360体育免费直播NBA 很黄的吸乳A片三男一女 女人无遮挡裸交性做爰 亚洲AV色香蕉一区二区三区 日本19岁上大学上网课可以吗 辣妹子影院电视剧免费播放视频大全在线观看 欧美色精品人妻在线视频 女保险公司推销员5中字 少妇的味道2HD 美丽姑娘高清版在线观看免费中文 成全影视大全在线播放 一边下奶一吃敷面膜视频60分钟 日本19岁上大学上网课可以吗 国产激情久久久久久熟女老人AV 边做边呻吟边做边爱视频 雯雯的性调教日记H全文骨科视频 青青河边草免费观看西瓜动漫 农村+肉+屁股+粗+大+岳 卖保险套的女销售3 公孙离脸红翻白眼享受表情包 三年在线观看免费完整版中文